UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ZOOTECNIA

TUTORIAL

Análise de corridas de homozigose e assinaturas de seleção no programa PLINK

Renata de Fátima Bretanha Rocha

Pamela Itajara Otto

Arielly Oliveira Garcia

Mateus Guimarães dos Santos

Marcos Vinicius Gualberto Barbosa da Silva

Marta Fonseca Martins

Marco Antonio Machado

João Cláudio do Carmo Panetto

Simone Eliza Facioni Guimarães

Viçosa

2023

TUTORIAL

Análise de corridas de homozigose e assinaturas de seleção no programa PLINK

Renata de Fátima Bretanha Rocha¹, Pamela Itajara Otto², Arielly Oliveira Garcia¹, Mateus Guimarães dos Santos¹, Marcos Vinicius Gualberto Barbosa da Silva³, Marta Fonseca Martins³, Marco Antonio Machado³, João Cláudio do Carmo Panetto³, Simone Eliza Facioni Guimarães¹

¹Departmento de Zootecnia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brasil. ²Departmento de Zootecnia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil.

³EMBRAPA – Gado de Leite, Juiz de Fora, MG 36038-330, Brasil

ISBN: 978-65-5668-138-2 DOI: http://dx.doi.org/10.26626/9786556681382.2023B0001

Agradecimentos

Agradecemos às fazendas e à Empresa Brasileira de Pesquisa Agropecuária (Embrapa) – Gado de Leite, Juiz de Fora – MG, que forneceram os dados para este estudo.

Financiamento

Este estudo recebeu o apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPQ) - Processos 402935/2021-7, 142600/2019-9 e 200147/2022-6, da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/PROEX 88887.844747/2023-00 e do Instituto Nacional de Ciência e Tecnologia de Ciência Animal (INCT-CA).

> VIÇOSA 2023

Este tutorial é para ajudar a fazer uma análise de corridas de homozigose (ROH) e assinaturas de seleção pela metodologia FST usando o software PLINK, por exemplo, para quem e não sabe por onde começar.

Este tutorial não é definitivo! Estude sobre o assunto para saber qual o tipo de análise se adequa melhor à sua pesquisa e como ela pode ser realizada!

SUMÁRIO

1. Arquivos necessários para a análise de ROH	3
1.1 O arquivo de mapa	3
1.2 O arquivo de pedigree	3
1.3 O programa PLINK	4
2. Como montar os arquivos .ped e .map a partir de um arquivo de genótipos usados nos programas do Misztal	6
2.1 Transformando o arquivo de dados .csv para .txt	6
2.2 Formatando arquivo de pedigree/genótipo	7
2.3 Formatando arquivo de mapa no software R	. 13
3. Análise de ROH no PLINK	. 15
3.1 Rodando a análise	. 15
3.2 Resultados da análise	. 20
3.3 Como cada análise é descrita no artigo	. 24
3.4 Número e Tamanho de ROHs por cromossomo e classe	. 24
3.5 Genome Coverage por cromossomo	. 27
4. Calculando a endogamia baseada em ROH (FROH)	. 28
4.1 FROH por cromossomo e por classe	. 28
4.2 Variação de uma característica com a FROH	. 29
Referências	. 31
5. Análise de FST – assinatura de seleção	. 33
Resultados	. 33

1. Arquivos necessários para a análise de ROH

- Arquivo de mapa
- Arquivo de pedigree

Os arquivos de mapa e fenótipos/genótipos são diferentes dos usados em GWAS. Este tutorial mostra a formatação dos arquivos necessários para a análise de ROH a partir de arquivos pré-existentes para uma análise nos programas do Misztal. As formatações são feitas no software R e no LINUX.

Em seguida tem o passo a passo para realizar a análise de ROH, o cálculo da endogamia baseada em ROH (FROH) e, também, para realizar a análise de FST.

1.1 O arquivo de mapa

As colunas do arquivo de mapa tem que ser todas separadas por espaço ou todas separadas por TAB. Por padrão, cada linha do arquivo de mapa descreve um único marcador e deve conter exatamente quatro colunas:

- Cromossomo
- rs# ou identificador/nome do SNP
- Distância genética em morgans
- Posição em pares de bases (unidades de pb)

Neste caso a coluna de distância genética em morgans está zerada, pois não preciso dessa informação para esta análise.

	G 2 b * b × a 5 (- 🛱 🐝	🟥 🖷 🛛 Codifica
1	BovineHD010000015	0	36337
1	BovineHD0100046367	0	89725
1	BovineHD010000035	0	120183
1	BovineHD010000037	0	127885
1	BovineHD010000039	0	146011
1	BovineHD010000040	0	147231
1	RovineHD0100000/2	Ø	1/19772

Os arquivos de mapa e de pedigree devem ter o mesmo nome, mas o de mapa deve ter a extensão .map e o de pedigree .ped. Exemplo:

- ➢ arquivo123.map
- ➤ arquivo123.ped

1.2 O arquivo de pedigree

As colunas do arquivo de pedigree tem que ser todas separadas por espaço ou todas separadas por TAB. As primeiras seis colunas são obrigatórias:

- ➢ Family ID (identificação da família − se não tiver, deixar 0)
- Individual ID (identificação do indivíduo)
- Paternal ID (identificação do pai se não tiver, deixar 0)
- Maternal ID (identificação da mãe se não tiver, deixar 0)
- Sexo (1=macho; 2=fêmea; outro número=desconhecido)
- Fenótipo (para essa análise não precisa, então deixar é 0)
- Em seguida vem as colunas com as letras dos genótipos (vai ter uma coluna para cada SNP, então é um arquivo muito grande)

Exemplo:

0	AB52502	Tgir-824	Gir-2697	2	0	Α	В	Α	В	Α	В	Α	Α	В
0	AB52503	Tgir-879	RRP6537	2	0	Α	В	Α	Α	Α	В	Α	Α	в
0	AB52505	Tgir-1037	Gir-4774	2	0	Α	В	Α	В	Α	В	Α	Α	В
0	AB52508	Tgir-1399	Gir-2705	2	0	Α	В	Α	Α	В	В	Α	В	В
0	AB52511	Tgir-1009	Gir-716	2	0	Α	В	В	В	Α	В	Α	Α	Α
0	AB52512	Tgir-1009	Ne21RRP6419	2	0	Α	В	Α	В	Α	В	Α	Α	в
0	AB52514	Tgir-1295	Gir-716	2	0	Α	Α	Α	в	Α	Α	в	Α	в
0	AB52516	Tgir-1437	RRP6395	2	0	Α	в	Α	в	Α	в	Α	Α	Α
0	AB52517	Tgir-879	Gir-2805	2	0	Α	в	Α	в	Α	в	Α	Α	В

1.3 O programa PLINK

Com a versão 1.07 do PLINK, pode ser feita a análise de ROH. Com a versão 1.09 do PLINK, além da análise de ROH também pode ser feita a análise de FST

- Mais informações em: <u>https://zzz.bwh.harvard.edu/plink/data.shtml</u>
- Ou só pesquisar: "PLINK: Whole genome data analysis toolset"

Referências

• Para a versão 1.07 do PLINK:

Purcell S, Neale B, Todd-Brown K, et al (2007) PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet 81:559– 575. https://doi.org/10.1086/519795

• Para a versão 1.09 do PLINK:

Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ (2015) Secondgeneration PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:s13742–015–0047–8. https://doi.org/10.1186/s13742-015-0047-8

2. Como montar os arquivos .ped e .map a partir de um arquivo de genótipos usados nos programas do Misztal

Como estes arquivos são grandes, pode ser necessário usar um servidor LINUX. No servidor pode-se instalar o software R e usá-lo para montar os arquivos ou usar o próprio sistema LINUX para montar os arquivos.

Arquivo de genótipos no formato para programas do Misztal: genotipos.csv

Arquivo Página Inicial Inserir Layout da Página Fórmulas Da	dos Revisão Exibição		-	_			-		_	۵ (3 - e ×
	🚔 Quebrar Texto Automaticamente	Geral	٠	E SS			-	* [Σ AutoSon	a Ž	3
N Z S * ⊞ * 🌺 * 📥 * ≡ ≡ ≡ 🛱 🛱	🔤 Mesclar e Centralizar 👻	ഈ ∽ % 000	•,0 400 •,0 4,0	Formatação Condicional * c	Formatar omo Tabela •	Estilos de Célula *	Inserir *	Excluir Forma	tar 🖉 Limpar 🕶	Classifica e Filtrar *	r Localizar e Selecionar *
Área de Tra 🗊 Fonte 🕼 🥖	linhamento 🖙	Número	Gi.		Estilo			Células		Edição	
A1 • (* fx 102916029440											÷ *
A B C D E F	G H I J	K	L	M	N	0	Ρ	Q	R S	Т	U 🚍
1 102916029440 20221111111011112011222222221000222000021	11210100101112022021202220211	01212022220002	02222202	222022202220	2202011221	212000220	2020022	20102221122	2222020121111	1201012011	11121111
2 1011212210200002000022022022020202021102022222121110021002	11022022212102222122001002220	02202011120111	2102212	211220112102	2101100000	202202000	210112	22102220220	0202022202220	2202202202	02200201
3 201012111111201122022222221220002020202	22202221221111002000222020222	00000020202222	2200020	220111222112	1121101120	111112122	20120220	00122112202	2002202022220	2202200212	10111111
4 022012111111111111111102202222021111122122	10122222212121011121110111111	10200222022222	0112222	000202120222	2022022022	210222202	20202020	11121210221	2112222121102	2010111012	22200000
5 011111111112010012122221121121211111111	10101022101101212202200110001	12011122212102	1100110	211120202020	0202002022	022022100	002201	11212211021	2002111111211	1112111111	01211111
6 220211110122120000000212201111102121222000202000020210112	221220122111000020202020202120	00111010211110	0200121	211101011111	1121001111	111102002	2020022:	12101000110	1220121122000	0201111111	11011111
7 0111112122112110012002120111200110022200220022200022020202	222220202002022022222202000020	20220002222220	0000002	022222022202	2022022020	111211111	112200	20200222200	20002020002222	0200202022	20000020
8 122102002102201121121112101201121221022022	202222222220221011210201012122	10221112002111	1111101	211211212020	2200020120	011000021	111111	12011101111	2101102111120	1021101012	20222000
9 200022022022222002000220002220220200200	02022010222011211021111111121	11101110000222	2000001	222000220002	1102112212	020001200	100022	00202220022	02202200202000	0022011110	21222001:
10 2002002222221200222002002200011111001212122111111	10110112111201010002101111121	11010111100010	1211102	110122211110	0201112120	022100011	202211	20200022002	2200021122121	2022222022	22222220:
11 2211111122111100111211111012201111021000112111110210021111	21112111222122212220110202220	1200222122222	2000212	200022201102	11111111112	220211111	1111111	10111111121	1111111020210	2111111110	11211121:
12 022000200220200222022202220022220022022	22000222020220000220000222000	02202000020222	0202200	002022222202	2002202222	200202020	202202	22220000202	00020202200220	2022220022	20020020:
13 0202001222012101220102202212100021202200102102	20002011020100011102112102210	11012222012022	2002012	121112201101	2111111111	110200112	2001101	11222121101	1122111011111	1212202200	22201111
14 AB52502 20222000202202002220200222222221100212001120122	11110211110022121202111122002	22022202000022	2211111	120001222112	002222220	100022020	2002201	02221101221	2021111211112	12112012222	212220221
15 102111110020100200002112111111122011101011222220220	02022022212102222021001002220	02202111011112	2202221	102220002102	2202200000	202202100	200112	22102220220	1202022202221	2202202202	02200201
16 2020022220222200222022222222220002020202	22202222222222002000222020222	00000020202222	2200020	2202002222020	0222000020	020222022	20220220	00022202202	2002202022220	2202200202	00200000
17 0220121111111111111111102202222021111122122	0111121111212001112100100020	10200222022222	0222222	000202220222	2022022022	210222202	202020	11121210221	2112222121102	2020111012	22111111
18 1111111100212100022222220222221211111111	0000022000112221212211100001	01002022201101	1201111	211120212111	1101101112	022022110	001200	21222202020	2002011110201	1112111111	01211111
19 2202222200220200000002022000020222022000202	22122102222200111121111102220	00000020211100	0201111	111101020002	1121002022	022211012	011111	21111011111	1111112211001	1110220020	11111000
20 02200020221121100120020211112220200112001200222020020	22221100211112201222202000120	11111112012212	1120202	212112211210	0022111111	211122221	211200	20200112211	1111111121111	12222222220	02222202
21 122102002112201120021112011202121221022022	111112111111120201011110012022	20222202002020	0000002	220201222020	2201110111	020011112	020220	22120202202	1202202002020	0022211122	11212000
22 11111101111111111111111111121202220020201120210102102	02022010212012111121111111121	00112120000222	2000001	111100220002	1102112121	020002200	2000220	00202220022	12202200202020	0022000220	21222100
23 0200020022202022220020202202202202202020	20022022022202220002202220022	02000222200202	2022020	2200222222221	02022222200	222200022	2222222	00200022002	2200000022022	20222222022	20022220
24 2021111111120200211222101012201111021000112111110210021111	21112100221121111110100212220	221021222200202	2000202	200021201101	2111121111	211121111	110220	00220200012	2120202120200	2221022200	20222222
25 0220011220222002200012212211111110110022221220120021110121	12000212011111122222222222002202	200202022222222	2111111	111012112112	2211222000	000020002	011020	01102210121	2221111220100	01111110022	10202111
1 + E Genotinos Renata GWAS imputado		2002020202000									>>
Pronto									100	6 😑	•

O arquivo de genótipos acima contém duas colunas: na primeira tem a identificação dos animais e na segunda tem os genótipos (formato para serem usados em programas do Misztal para análise de GWAS e seleção genômica, por exemplo).

O arquivo deste exemplo contém 420.718 marcadores SNPs nas colunas e 2.093 animais nas linhas. Como o arquivo é grande, não é viável manipular os dados pela planilha no Excel. Arquivos maiores que este pode ser que nem abram neste formato.

2.1 Transformando o arquivo de dados .csv para .txt

a. Se o arquivo de genótipos for pequeno

Alguns arquivos de genótipos para exercícios em sala de aula, por exemplo, podem conter pouca quantidade de animais e marcadores, apenas para fins didáticos. É possível copiar o conteúdo para o Notepad++ e salvar o arquivo.

b. No software R

geno<-read.csv(genotipos.csv) # importando os dados library(gdata) # abrindo a biblioteca para rodar o comando abaixo write.fwf(geno, file = './genotipos.txt', rownames=F, colnames=F, quote=F, sep = " ", justify='left') # salvando o arquivo no formato para os programas do Misztal

c. No LINUX

O comando abaixo pega o arquivos em .csv e salva em .txt tr ',' '\n' < genotipos.csv > genotipos.txt

2.2 Formatando arquivo de pedigree/genótipo

O arquivo de genótipos do PLINK é uma junção do pedigree e dos genótipos nos animais, além de mais algumas informações, como visto no tópico 1.2. Então a partir do arquivo de pedigree e de genótipos no formato dos programas do Misztal, podemos formar o arquivo para ser usado no PLINK.

A seguir são apresentadas duas formas (a. No software R) e (b. Parte no software R e outra parte no LINUX) para obter o arquivo de pedigree/genótipo para PLINK.

a. No software R

Neste caso, o servidor já tem o software R instalado. A forma de abrir o programa no servidor do exemplo é apenas digitando:

R

Clicar na tecla 'ENTER'

```
🛃 renata.rocha@galloway: -
renata.rocha@galloway:~$ R
R version 3.6.3 (2020-02-29) -- "Holding the Windsock"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
 is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
 Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
 Π
```

Como mostrado na imagem acima o servidor vai direcionar para dentro do software R.

Em seguida, usar os comandos do R para montar o arquivo:

rm(list=ls()) #Limpando o *environment* (conteúdo do R) options(stringsAsFactors=F) # Este é um argumento para a função 'data.frame()' no R. É uma lógica que indica se as *strings* em um quadro de dados devem ser tratadas como variáveis de fator ou apenas como *strings* simples. setwd("/home/pasta_com_arquivos") # Direcionando para a pasta ped<-read.table("ped.txt",h=F,sep="\t") # Importando arquivo de pedigree dim(ped) # Verificando a dimensão do arquivo: número de linhas e de colunas colnames(ped)<-c("ID", "PAI", "MAE", "SEX") # Atribuindo nomes nas colunas

A função read.table() demoraria muito pra importar o arquivo de genótipos, por isso, usar o seguinte:

library('data.table')

genotipos <-fread("genotipos.txt",h=F) # Importando arquivo de genótipos colnames(genotipos)<-c("ID","GEN") # Atribuindo nomes nas colunas do arquivo dim(genotipos) # Verificando a dimensão do arquivo: número de linhas e de colunas ped1<-merge(ped, genotipos[,1], by = intersect("ID", "ID")) # Pegando o pedigree só dos animais que tem genótipo head(ped1) #Visualizando as primeiras 6 linhas do arquivo

Recodificando os genótipos – nesta parte estamos transformando os números em letras e separando todos por espaço simples

Se estiver rodando a análise no R do Windows, pode deixar as letras dentro do comando gsub separadas por TAB.

Assim: gsub("0", "A A", x)

Se estiver rodando a análise no R no servidor, ao copiar e colar a linha de comando lá o espaçamento do TAB não aparecer, então tem que deixar separado por espaço simples.

```
geno_total<-as.data.frame(genotipos[,2])</pre>
```

total1<-data.frame(lapply(geno_total, function(x) {gsub("0", "A A", x)})) total2<-data.frame(lapply(total1, function(x) {gsub("1", "A B", x)})) total3<-data.frame(lapply(total2, function(x) {gsub("2", "B B", x)})) total4<-data.frame(lapply(total3, function(x) {gsub("AA", "A A", x)})) total5<-data.frame(lapply(total4, function(x) {gsub("BB", "B B", x)})) total6<-data.frame(lapply(total5, function(x) {gsub("AB", "A B", x)})) total7<-data.frame(lapply(total6, function(x) {gsub("BA", "B A", x)})) dim(total7) # As linhas representam o número de animais, mas vai ter apenas uma coluna.

Formando o arquivo para o PLINK

seq0<-rep(0,nrow(geno_total)) # Essa sequência de zeros ficará no lugar das colunas de

família e de ano de nascimento

arquivo123_esp<-cbind(seq0, ped1, seq0, total7) # Juntando as colunas

No arquivo formado terão as seguintes colunas nesta sequência:

Coluna zerada que seria a identificação da família

Identificação do indivíduo

Identificação do pai

Identificação da mãe

Sexo

Coluna zerada (que seria o fenótipo)

As colunas seguintes são as letras dos genótipos

PARA SALVAR

Se estiver rodando a análise no R do Windows: write.table(arquivo123_esp," arquivo123_esp.ped", quote = F, row.names = F, col.names = F, sep = "\t") # Este arquivo será salvo com as colunas separadas por TAB # Assim temos o arquivo de pedigree+genótipos para o LINUX!!! (com apenas as colunas de genótipos separadas por espaço)

Se estiver rodando a análise no R no servidor: write.table(arquivo123_esp," arquivo123_esp.ped",quote=F,row.names=F,col.names=F) # Este arquivo será salvo com todas as colunas separadas por espaço simples # Agora para pegar esse arquivo e separar as colunas por TAB: # 1ª Opção -> Recomendada (mais rápida): sair do R no servidor q() #comando para sair do R Save workspace image? [y/n/c]:

No LINUX, podemos separar as colunas do arquivo por TAB com o seguinte comando:

sed -e 's/ /\t/g' arquivo123_esp.ped > arquivo123.ped

Assim temos o arquivo de pedigree+genótipos para o LINUX !!!

2ª Opção -> Pode ser usada para arquivos pequenos, por exemplo, porque quanto maior o arquivo mais pode demorar.

No próprio R, importar o arquivo novamente (Ao importar novamente, os genótipos já vêm divididos em colunas)

Não é necessário fazer nenhuma edição no arquivo

setwd("/home/pasta_com_arquivos")

n

library('data.table')

arquivo123<-fread("arquivo123_esp.ped",h=F) # Importando o arquivo # O comando acima demora um pouco (~ 5 a 10min) neste exemplo. # No comando para salvar, usamos sep="\t" que separa todas as colunas por TAB write.table(arquivo123," arquivo123.ped",quote=F,row.names=F,col.names=F,sep="\t") # Assim temos o arquivo de pedigree/genótipos para o LINUX!!!

b. Parte no software R e outra parte no LINUX

Essa primeira parte feita no software R é usada apenas para separar o pedigree dos animais que tem genótipo.

Se já tiver o pedigree desses animais separados, pode pular a parte do script do R.

Precisamos ter os arquivos:

ped.txt (com animal, pai, mae e sexo) -> Se não tiver info de sexo e não precisar para a análise basta criar uma coluna de zeros

ids.txt -> Arquivo que tem uma coluna com as identificações dos animais do arquivo de genótipos

Novamente, no servidor, digitar:

R

rm(list=ls()) #limpa todo o conteúdo/arquivos que existem no R options(stringsAsFactors=F)

setwd("/home/pasta_com_arquivos") # Direcionando para a pasta onde estão os arquivos

ped<-read.table("ped.txt",h=F,sep="\t") # Importando arquivo de pedigree

colnames(ped)<-c("ID","PAI","MAE","SEX") # atribuindo os nomes de cada coluna do arquivo de pedigree

ids<-read.table("ids.txt",h=F) # Importando as identificações dos animais do arquivo de genotipos

colnames(ids)<-c("ID") # atribuindo o nome da coluna do arquivo de identificação ped_roh<-merge(ids, ped, by=intersect("ID","ID")) # pegando os animais em comum do arquivo de identificações (genótipos) e do pedigree dim(ped_roh) # mostra o número de linhas (número de animais) e 4 colunas (id, pai, mae e sexo)

write.table(ped_roh, "ped_roh.ped", quote=F, row.names=F, col.names=F, sep="\t")

Criando arquivo com sequência de zeros para usar no LINUX

seq0<-as.data.frame(rep(0,nrow(ped_roh)))</pre>

write.table(seq0,"seq0.txt",quote=F, row.names=F, col.names=F) # salvando o arquivo q() #sair do R

No LINUX

Cuidado ao copiar comandos com TAB e colar no servidor - ele não cola o

espaçamento do TAB

Fazer cada comando por vez, porque cada comando é um pouco lento.

awk '{ print \$2 }' genotipos.txt > snps.ped #pegando a coluna só com os genótipos

sed -i 's/0/A A/g' snps.ped

sed -i 's/1/A B/g' snps.ped

sed -i 's/2/B B/g' snps.ped

sed -i 's/AA/A A/g' snps.ped

sed -i 's/BB/B B/g' snps.ped

sed -i 's/AB/A B/g' snps.ped

sed -i 's/BA/B A/g' snps.ped

Formando o arquivo de genótipos para PLINK

#Juntando seq0, ped_roh, zeros, snps

Esse arquivo seq0 foi criado no script do R (acima)

Tem que ter certeza que os animais no arquivo de ped estão na mesma ordem do arquivo de genótipos!

paste seq0.txt ped_roh.ped seq0.txt snps.ped > arquivo123_esp.ped

Por padrão, a função paste() separa as linhas de cada coluna do arquivo com TAB:

https://www.vivaolinux.com.br/dica/O-comando-paste

Atenção: uma parte dos genótipos continua sendo uma coluna com as letras

separadas por espaço.

Então, para substituir os espaços por TAB:

sed -e 's/ /\t/g' arquivo123_esp.ped > arquivo123.ped

2.3 Formatando arquivo de mapa no software R

Como visto no tópico 1.1, o arquivo de mapa deve ter um formato específico para análises no PLINK.

Supondo que temos um arquivo de mapa prévio com o seguinte formato: três colunas \rightarrow a primeira tem o nome do SNP, a segunda tem o cromossomo e a terceira tem a posição:

	G.	2	Þ	ob	Ê	×	а	5
Вον	ine	HD0	100	000	015	1	363	37
Bov	ine	HDØ	100	046	367	1	897	25
Bov	ine	HDØ	100	000	035	1	120	183
Bov	ine	HD0	100	000	037	1	127	885
Bov	ine	HDØ	100	000	039	1	146	011
Bov	ine	HDØ	100	000	040	1	147	231
Bov	ine	HDØ	100	000	042	1	149	772
Boy	ine	нра	100	aaa	64 3	1	151	<u>969</u>

Este arquivo pode ser transformado em um arquivo de mapa específico para análise no PLINK com o seguinte script para o software R (pode ser no Windows ou no LINUX, porque esse arquivo é menor).

• No software R:

rm(list=ls())

options(stringsAsFactors=F) # tem que ter esse comando, se não os nomes dos SNPs viram números na hora de formar o mapa novo

setwd("/home/pasta_com_arquivos") # Directionando para a pasta

mapa<-read.table("snpmap.txt",h=F) # Importando arquivo de mapa

dim(mapa) # Verificando a dimensão do arquivo de mapa - número de linhas (SNPs) e

colunas (três neste caso: nome do SNP, cromossomo e posição)

head(mapa) # Visualizando as seis primeiras linhas do arquivo de mapa

coluna0<-rep(0,nrow(mapa)) # Criando uma coluna só com valores zero, com o mesmo número de linhas do arquivo de mapa.

length(coluna0) # Comprimento da coluna de zeros

snpnames<-mapa[,1] # Criando um vetor que contém apenas o nome dos SNPs

Em seguida, criamos um arquivo com as colunas do arquivo de mapa para o PLINK:

 1^{a} col = cromossomo, 2^{o} col = nomes dos SNPs, 3^{o} col = coluna de zeros (esse seria

preenchida pela posição dos marcadores de Morgans, mas essa informação não é

necessária nesta análise, portanto zeramos a coluna toda) e 4^a = posição dos marcadores em pares de bases.

mapa_novo<-cbind(mapa[,2],snpnames, coluna0,mapa[,3])</pre>

head(mapa_novo) # Visualizando as primeiras linhas do arquivo de mapa criado para o PLINK

#Em seguida, salvar o arquivo criado:

write.table(mapa_novo,"arquivo123.map", quote=F, row.names=F, col.names=F,

sep="\t") # Salvando o arquivo de mapa para o PLINK

3. Análise de ROH no PLINK

Para a análise de ROH, usamos o programa PLINK para formar arquivos binários. Podemos rodar a análise sem transformar para arquivo binário, neste caso, é só tirar o "b" de "bfile" no comando, mas tendo os arquivos binários a análise é mais rápida. Em uma pasta no servidor, deixar os seguintes arquivos:

- Arquivo de mapa (Ex.: arquivo123.map)
- Arquivo de pedigree (Ex.: arquivo123.ped)
- Programa PLINK

Os arquivos .map e .ped tem que ter o mesmo nome, pois na linha de comando da análise só escrevemos "arquivo123" sem identificar o ".map" ou ".ped". O programa lê os dois de uma vez.

3.1 Rodando a análise

• No servidor, direcionar para a pasta com os arquivos:

cd meusdados/pasta_arquivos

Dá ENTER

• Usar o comando seguinte para abrir espaço no servidor: ulimit -s unlimited

Dá ENTER

• Usar o comando seguinte no servidor para criar o arquivo binário:

./plink --noweb --cow --file arquivo123 --make-bed --out plinkbfile_arquivo123

Dá ENTER

- Depois que a análise acima termina, vai soltar as seguintes saídas na pasta:
- plinkbfile_arquivo123.beb
- plinkbfile_arquivo123.bim
- plinkbfile_arquivo123.fam
- plinkbfile_arquivo123.log

Nome	Tamanho	Data de modificação	Direitos	Proprie
t_		16/04/2022 17:37:43	rwxrwxr-x	renata
arquivo123.map	13.357 KB	25/06/2021 19:04:05	rw-rw-r	renata
arquivo123.ped	3.439.76	28/06/2021 19:06:46	rw-rw-r	renata
] plink	40.680 KB	06/06/2021 17:54:48	rwxrwxr-x	renata
plinkbfile_arquivo123.bed	215.290 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.bim	15.000 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.fam	69 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.log	2 KB	16/04/2022 17:52:11	rw-rw-r	renata

- Em seguida, usar a linha de comando abaixo para rodar a análise de ROH: ./plink --bfile plinkbfile_arquivo123 --cow --noweb --homozyg-density 50 --homozyg-gap 1000 --homozyg-kb 1000 --homozyg-snp 50 --homozyg-window-het 1 --homozyg-window-missing 5 --homozyg-window-snp 50 --homozyg-window-threshold 0.05 -- nonfounders --geno 0.02 --maf 0.05 --mind 0.1 --out roh_out_arquivo123 Dá ENTER
 - **Detalhes importantes:**
 - Linha de comando: aqui neste arquivo a linha de comando fica "quebrada" por causa do limite de espaço, mas a linha de comando não pode estar "quebrada" quando é colada no Linux, pois dá erro e a análise não é finalizada como deveria.
 - Sugestão: Colar a linha de comando no Notepad++ e daí copiar ela inteira para colar no servidor.


```
PLINK v1.90b6.24 64-bit (6 Jun 2021)
                                               www.cog-genomics.org/plink/1.9/
(C) 2005-2021 Shaun Purcell, Christopher Chang GNU General Public License v3
Logging to roh out arquivol23.log.
Options in effect:
 --bfile plinkbfile_arquivol23
  --cow
  --geno 0.02
  --homozyg-density 50
 --homozyg-gap 1000
 --homozyg-kb 1000
 --homozyg-snp 50
  --homozyg-window-het 1
  --homozyg-window-missing 5
  --homozyg-window-snp 50
  --homozyg-window-threshold 0.05
  --maf 0.05
  --mind 0.1
  --nonfounders
  --noweb
  --out roh_out_arquivol23
Note: --noweb has no effect since no web check is implemented yet.
128830 MB RAM detected; reserving 64415 MB for main workspace.
420718 variants loaded from .bim file.
2093 cattle (170 males, 1923 females) loaded from .fam.
0 cattle removed due to missing genotype data (--mind).
Using 1 thread (no multithreaded calculations invoked).
Before main variant filters, 1 founder and 2092 nonfounders present.
Calculating allele frequencies... done.
Total genotyping rate is exactly 1.
0 variants removed due to missing genotype data (--geno).
24850 variants removed due to minor allele threshold(s)
(--maf/--max-maf/--mac/--max-mac).
395868 variants and 2093 cattle pass filters and QC.
Note: No phenotypes present.
--homozyg: Scan complete, found 104609 ROH.
Results saved to roh out arquivol23.hom + roh out arquivol23.hom.indiv +
roh out arquivol23.hom.summary .
renata.rocha@galloway:~/roh/3 total/Tutorial$
```

- Depois que a análise termina, solta as seguintes saídas:
- roh_out_arquivo123.hom
- roh_out_arquivo123.hom.indiv
- roh_out_arquivo123.hom.summary
- roh_out_arquivo123.log

Nome	Tamanho	Data de modificação	Direitos	Proprie
t_		16/04/2022 17:37:43	rwxrwxr-x	renata
arquivo123.map	13.357 KB	25/06/2021 19:04:05	rw-rw-r	renata
arquivo123.ped	3.439.76	28/06/2021 19:06:46	rw-rw-r	renata
] plink	40.680 KB	06/06/2021 17:54:48	rwxrwxr-x	renata
plinkbfile_arquivo123.bed	215.290 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.bim	15.000 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.fam	69 KB	16/04/2022 17:52:11	rw-rw-r	renata
plinkbfile_arquivo123.log	2 KB	16/04/2022 17:52:11	rw-rw-r	renata
roh_out_arquivo123.hom	19.104 KB	16/04/2022 17:56:43	rw-rw-r	renata
roh_out_arquivo123.hom.indiv	109 KB	16/04/2022 17:56:43	rw-rw-r	renata
roh_out_arquivo123.hom.summary	29.381 KB	16/04/2022 17:56:43	rw-rw-r	renata
roh_out_arquivo123.log	2 KB	16/04/2022 17:56:43	rw-rw-r	renata

FLAGS relacionadas à ROH:

- --homozyg-density ## No default: uma ROH deve ter pelo menos um SNP por 50 kb em média.
- --homozyg-gap ## No default: se dois SNPs consecutivos estiverem separados por mais de 1000 kb, eles não podem estar no mesmo ROH.
- --homozyg-snp ## No default: apenas ROH contendo pelo menos 100 SNPs e de comprimento total ≥ 1000 kb são anotadas.
- --homozyg-kb ## Podemos alterar esses mínimos com --homozyg-snp e --homozyg-kb, respectivamente.
- --homozyg-window-het ## No default: uma ocorrência de janela de varredura pode conter no máximo 1 chamada heterozigótica.
- --homozyg-window-missing ## No default: uma ocorrência de janela de varredura pode conter no máximo 5 chamadas perdidas.
- --homozyg-window-snp ## No default: a janela de varredura contém 50 SNPs.
- --homozyg-window-threshold ## No default: para que um SNP seja elegível para inclusão em um ROH, a taxa de acerto de todas as janelas de varredura contendo o SNP deve ser de pelo menos 0,05.
- --nonfounders ## Somente fundadores são normalmente considerados por esses filtros (use a flag para mudar isso).

FLAGS relacionadas ao controle de qualidade (CQ) do arquivo de genótipos.

 --geno ## No default: filtra todos os marcadores com taxas de chamadas ausentes excedendo o valor fornecido (padrão 0,1) para serem removidas.

- --maf ## No default: filtra todas marcadores com frequência de alelo menor abaixo do limite fornecido (padrão 0,01).
- --mind ## Idem --geno só que para amostras.
- --hwe ## Exclui amostras (individuos) e/ou marcadores com base no critério definido para o equilíbrio de Hardy-Weinberg
- --hardy## Faz uma estatística resumida das taxas de HWE

3.2 Resultados da análise

Mais detalhes em: https://www.cog-genomics.org/plink/1.9/formats#hom

roh_out_arquivo123.log

Este arquivo tem um resumo dos parâmetros usados na análise:

```
PLINK v1.90b6.24 64-bit (6 Jun 2021)
Options in effect:
  --bfile plinkbfile arquivo123
  --COW
  --geno 0.02
  --homozyg-density 50
  --homozyg-gap 1000
  --homozyg-kb 1000
  --homozyg-snp 50
  --homozyg-window-het 1
  --homozyg-window-missing 5
  --homozyg-window-snp 50
  --homozyg-window-threshold 0.05
  --maf 0.05
  --mind 0.1
  --nonfounders
  --noweb
  --out roh_out_arquivo123
Hostname: galloway
Working directory: /home/renata.rocha/roh/3_total/Tutorial
Start time: Sat Apr 16 20:56:36 2022
```

E também resumo dos resultados da análise:

▶ ...

- ▶ 420718 é o número de marcadores/SNPs no arquivo original
- 2093 é o número de indivíduos (170 machos e 1923 fêmeas)
- > 0 indivíduos removidos devido a genótipo ausente.

▶ ...

- O marcadores removidos devido a genótipo ausente. O arquivo imputado original neste exemplo realmente não tinha genótipos imputados.
- 24850 marcadores removidos devido à MAF
- > 395868 marcadores e 2093 indivíduos passaram no filtro do controle de qualidade
- --homozyg: varredura completa, encontrou 104609 ROHs

Note: --noweb has no effect since no web check is implemented yet. Random number seed: 1650142596 128830 MB RAM detected; reserving 64415 MB for main workspace. 420718 variants loaded from .bim file. 2093 cattle (170 males, 1923 females) loaded from .fam. 0 cattle removed due to missing genotype data (--mind). Using 1 thread (no multithreaded calculations invoked). Before main variant filters, 1 founder and 2092 nonfounders present. Calculating allele frequencies... done. Total genotyping rate is exactly 1. 0 variants removed due to missing genotype data (--geno). 24850 variants removed due to minor allele threshold(s) (--maf/--max-maf/--mac/--max-mac). 395868 variants and 2093 cattle pass filters and QC. Note: No phenotypes present. --homozyg: Scan complete, found 104609 ROH. Results saved to roh out arquivo123.hom + roh out arquivo123.hom.indiv + roh out arquivo123.hom.summary . End time: Sat Apr 16 20:56:43 2022

• roh_out_arquivo123.hom

- Produzido quando uma bandeira da família --homozyg está presente. Acompanhado por pelo menos um arquivo .hom.indiv e um arquivo .hom.summary

 Cada linha do arquivo .hom representa uma ROH encontrada! Então o total de linhas (excluindo o cabeçalho) indica o total de ROHs encontradas. <u>O número de ROHs</u> <u>encontradas pode alterar dependendo do número de animais e dos parâmetros usados na</u> análise!

- O arquivo .hom tem as seguintes colunas:
- FID # Identificação da família -> Estará zerada neste caso, porque não era uma informação necessária.
- IID # Identificação do indivíduo. Um mesmo indivíduo pode aparecer várias vezes, pois ele tem várias ROHs.
- PHE # Valor fenotípico -> Neste caso não trabalhamos com o valor fenotípico, por isso está zerada.
- > CHR #Cromossomo em que está aquela ROH
- SNP1 # Identificação do primeiro SNPs na ROH
- SNP2 # Identificação do último SNPs na ROH
- POS1 # Posição do primeiro SNP em pares de bases

- POS2 # Posição do último SNP em pares de bases
- ➢ KB # Comprimento da ROH em kilobases
- NSNP # Número de SNPs nessa ROH
- DENSITY # Densidade de SNP inverso em Kb/SNP
- PHOM# Proporção de chamadas (marcadores?) homozigóticas
- PHET # Proporção de chamadas (marcadores?) heterozigóticas Dica: Se o arquivo de genótipos tiver animais com genótipos imputados, seria interessante comparar o PHET resultante de uma análise com todos os genótipos com o PHET resultante de uma análise que tem apenas animais originalmente genotipados em HD, porque o processo de imputação "adiciona" heterozigotos. Assim, pode-se verificar se existe alguma influência do processo de imputação na análise de ROH.

FID	IID	PHE	CHR	SNP1	SNP2	P0S1	POS2	KB	NSNP	DENSITY	PHOM	PHET ^
0	102916029440	-9.000	1	BovineHD0100006914	BovineHD0100012022	23381349	42095937	18714.589	2949	6.346	1.000	0.000
0	102916029440	-9.000	1	BovineHD0100047134	BovineHD0100029888	102458103	105162097	2703.995	466	5.803	0.994	0.006
0	102916029440	-9.000	1	BovineHD0100041142	BovineHD0100043043	143141556	148784184	5642.629	1056	5.343	0.998	0.002
0	102916029440	-9.000	1	BovineHD0100043081	BovineHD0100044179	148857503	152002893	3145.391	410	7.672	1.000	0.000
0	102916029440	-9.000	1	BovineHD0100044217	BovineHD0100045574	152126033	156040374	3914.342	708	5.529	0.999	0.001
0	102916029440	-9.000	2	BovineHD0200019851	BovineHD0200020565	68732542	71627667	2895.126	199	14.548	1.000	0.000
0	102916029440	-9.000	2	BovineHD0200022016	BovineHD0200025272	76593223	89069133	12475.911	1465	8.516	0.999	0.001
0	102916029440	-9.000	2	BovineHD0200031011	BovineHD0200032436	107756558	112727237	4970.680	608	8.175	0.998	0.002
0	102916029440	-9.000	2	BovineHD0200033469	BovineHD0200033810	116160522	117331836	1171.315	155	7.557	1.000	0.000
0	102916029440	-9.000	3	BovineHD0300008694	BovineHD0300010084	27353121	32151804	4798.684	964	4.978	0.999	0.001
0	102916029440	-9.000	3	BovineHD0300030376	BovineHD0300030777	105981690	107048733	1067.044	181	5.895	0.994	0.006
0	102916029440	-9.000	4	BovineHD0400003894	Hapmap44709-BTA-70915	13098702	15575489	2476.788	439	5.642	0.998	0.002
0	102916029440	-9.000	4	BovineHD0400005756	BovineHD040006069	19227607	20249307	1021.701	180	5.676	1.000	0.000
0	102916029440	-9.000	4	BovineHD0400009568	BovineHD0400010275	33749851	36697411	2947.561	459	6.422	1.000	0.000
0	102916029440	-9.000	4	BovineHD0400018018	BovineHD0400018470	65727477	67206589	1479.113	162	9.130	0.994	0.006
0	102916029440	-9.000	4	BovineHD0400034641	Hapmap32572-BTA-142704	118313905	120555019	2241.115	249	9.000	0.988	0.012
0	102916029440	-9.000	5	BovineHD0500010967	BovineHD0500011316	38339336	39502190	1162.855	147	7.911	0.993	0.007
0	102916029440	-9.000	5	BovineHD0500013540	BovineHD0500014334	47015593	49821847	2806.255	261	10.752	0.992	0.008
0	102916029440	-9.000	5	BovineHD0500017708	BovineHD0500018068	63361467	64604457	1242.991	198	6.278	1.000	0.000
0	102916029440	-9.000	5	BovineHD0500030954	BovineHD0500035330	107529728	120963715	13433.988	1618	8.303	0.999	0.001
0	102916029440	-9.000	6	BovineHD0600010245	BovineHD0600010487	36759019	37885679	1126.661	144	7.824	0.986	0.014
0	102916029440	-9.000	7	BovineHD0700015341	BovineHD0700015761	53361738	54507678	1145.941	173	6.624	1.000	0.000
0	102916029440	-9.000	8	BovineHD080000328	BovineHD0800003381	975443	10479876	9504.434	1975	4.812	1.000	0.000
0	102916029440	-9.000	9	BovineHD0900004946	BovineHD0900005513	18250661	20272219	2021.559	399	5.067	0.997	0.003
0	102916029440	-9.000	9	BovineHD0900018186	BovineHD0900018563	66064158	67172083	1107.926	216	5.129	1.000	0.000
0	102916029440	-9.000	9	BovineHD0900029583	BovineHD0900030799	101651200	104924541	3273.342	573	5.713	1.000	0.000
0	102916029440	-9.000	12	BovineHD1200007319	BovineHD1200007831	24396971	25955944	1558.974	189	8.249	0.995	0.005
0	102916029440	-9.000	12	BovineHD1200008340	BovineHD4100009484	28035606	29685420	1649.815	74	22.295	0.973	0.027
0	102916029440	-9.000	12	BovineHD1200015688	BTA-23785-no-rs	56835613	57900635	1065.023	118	9.026	0.983	0.017
0	102916029440	-9.000	13	BovineHD1300023645	BovineHD1300024087	81578587	82896251	1317.665	175	7.530	0.994	0.006
0	102916029440	-9.000	15	BovineHD1500006023	BovineHD1500006528	23467684	24799473	1331.790	296	4.499	1.000	0.000
0	102916029440	-9.000	15	BovineHD1500007739	BovineHD1500008973	28783351	33106808	4323.458	645	6.703	0.997	0.003
0	102916029440	-9.000	15	BovineHD1500022754	BovineHD1500024224	78218321	82853210	4634.890	688	6.737	1.000	0.000 🗸

- roh_out_arquivo123.hom.indiv
 - Produzido quando uma bandeira da família --homozyg está presente.
 - Cada linha do arquivo .hom.indiv representa um indivíduo. O total de linhas (exceto o cabeçalho) representa o número de indivíduos.
 - O arquivo .hom.indiv tem as seguintes colunas:
- FID # Identificação da família
- IID # Identificação do indivíduo
- PHE # Valor fenotípico
- NSEG # Número de ROHs encontradas no indivíduo
- ➤ KB # Comprimento total de ROHs (kb) → Soma de todos os comprimentos de ROHs do indivíduo

➢ KBAVG # Comprimento médio de ROHs (kb) → Média de todos os

FID	IID	PHE	NSEG	KB	KBAVG
0	102916029440	-9	51	198256	3887.37
0	AB52502	-9	52	213103	4098.13
0	AB52503	-9	42	102783	2447.22
0	AB52505	-9	57	202055	3544.82
0	AB52508	-9	57	262986	4613.79
0	AB52511	-9	64	285553	4461.76
0	AB52512	-9	61	346225	5675.82
0	AB52514	-9	64	375508	5867.32
0	AB52516	-9	47	108046	2298.85
р	ΔR52517	-9	47	97550 3	2075 54

comprimentos de ROHs do indivíduo

- roh_out_arquivo123.hom.summary
 - Produzido quando uma bandeira da família --homozyg está presente.
 - Cada linha do arquivo .hom.summary representa um marcador. O total de linhas
 - (exceto o cabeçalho) representa o número de marcadores.
 - O arquivo .hom.summary tem as seguintes colunas:
- ➤ CHR # Cromossomo
- SNP # Identificação do SNP
- BP # Posição do SNP/marcador em pares de bases
- > AFF # Número de casos com ROHs incluindo esse SNP/marcador
- UNAFF # Número de não-casos com ROHs incluindo esse SNP/marcador

Observe que as amostras com fenótipos ausentes são contadas na coluna 'UNAFF'. Se o fenótipo for quantitativo, todos serão contados em 'UNAFF'.

CHR	SNP	BP	AFF	UNAFF
1	BovineHD0100046367	89725	0	46
1	BovineHD010000035	120183	0	46
1	BovineHD010000039	146011	0	46
1	BovineHD010000040	147231	0	46
1	BovineHD010000042	149772	0	46
1	BovineHD010000043	151060	0	46
1	BovineHD010000044	152374	0	46
1	BovineHD010000048	158820	0	46
1	BovineHD010000049	160007	0	46
1	BovineHD010000052	164683	0	46
1	BovineHD010000054	168997	0	46
1	RovineHD010000057	1830/0	A	46

3.3 Como cada análise é descrita no artigo

Tomando a seguinte análise como exemplo:

--homozyg-density 100 --homozyg-gap 1000 --homozyg-kb 1000 --homozyg-snp 50 -homozyg-window-het 1 --homozyg-window-missing 5 --homozyg-window-snp 50 -homozyg-window-threshold 0.05 --geno 0.02 --mind 0.1 --maf 0.05 --hwe 0.15 -nonfounders --out roh_out_arquivo123

<u>A descrição abaixo segue **respectivamente** cada uma das FLAGS do exemplo acima.</u> (Esta é apenas uma sugestão!):

"A density of one SNP per 100 kb was used. The maximum gap between consecutive homozygous SNPs was 1000 kb. The minimum length of a ROH was set to 1 Mb. The minimum number of consecutive SNPs included in a ROH was 50. Up to one heterozygous genotype were allowed in a ROH. A maximum of 5 SNPs with missing genotypes and a sliding window of 50 SNPs across the genome were used. The proportion of homozygous overlapping windows was 0.05. For the quality control, the analysis considered call rate of 0.98 for genotype and 0.90 for samples, minor allele frequency (MAF) of 0,05 and Hardy Weinberg equilibrium of 0,15."

3.4 Número e Tamanho de ROHs por cromossomo e classe

Com o arquivo .hom e o script "1_ROH_graficos_classes.R" (anexa no final) podem ser feitos alguns exemplos práticos das análises, como a montagem de gráficos com o número e tamanho de ROHs por animal para incluir na publicação do artigo ou montar uma tabela com as informações de ROH por classe de tamanho. Os resultados gráficos podem ser apresentados como o da Figura 1:

Alguns artigos publicam o número total de ROHs por cromossomo (Figura 1). Outros artigos publicam o gráfico com as médias calculadas por animal e cromossomo (Figura 2). Para montar esses gráficos, verificar o script do R (1_ROH_graficos_classes.R).

Figura 2. Exemplo do número médio de ROHs por indivíduo e cromossomo

Os gráficos das Figuras 1 e 2 não mudam "em estrutura", só mudam em escala (eixo Y). O autor pode escolher qual acha ser mais adequado.

Com o script do R (1_ROH_graficos_classes.R) também podemos montar o gráfico do tamanho médio de ROHs por cromossomo.

Script do R (1_ROH_graficos_classes.R) \rightarrow <u>Seção</u>: Proporção de ROHs por tamanho Muitos artigos exploram as ROHs com relação ao seu tamanho, pois as ROHs maiores (mais longas) indicam endogamia mais recente. O que alguns pesquisadores fazem é dividir as ROHs em cinco classes de tamanho: de 0 ou 1 a 2 Mb, 2 a 4 Mb, 4 a 8 Mb, 8 a 16 Mb e acima de 16 Mb.

Assim, o arquivo .hom e o script do R (1_ROH_graficos_classes.R) também pode ser usado para montar resultados para essas classes de ROH.

Class	NPOH	Percent	LROH	Number of	SPOH	Genome
	INKOII	(%)	(Mb)	animals	SKOII	coverage
ROH _{1-2 Mb}	61,269	58.17	1.35	2,093	29.27	0.05%
$ROH_{2\!-\!4Mb}$	23,949	22.74	2.78	2,093	11.44	0.11%
$ROH_{4-8\;Mb}$	11,942	11.34	5.53	2,081	5.74	0.22%
$ROH_{8-16\;Mb}$	5,805	5.51	11.05	1,847	3.14	0.44%
$ROH_{>16Mb}$	2,362	2.24	24.66	1,132	2.09	0.99%

Tabela 1. Exemplo de parâmetros avaliados por classe de ROH.

¹NROH = número de ROHs; LROH = comprimento médio de ROHs; SROH = número médio de ROHs por animal.

A coluna Genome Coverage mostra a proporção do genoma que é coberta por essa classe do ROH. Considerando que o tamanho total do genoma bovino (espécie deste exemplo) é de 2489,37 Mb, a forma de se calcular a cobertura do genoma é dividir o

LROH pelo comprimento total do genoma, assim, (1,35 / 2489,35)*100 = 0,05% na classe ROH_{1-2 Mb} e assim por diante.

3.5 Genome Coverage por cromossomo

A informação de <u>tamanho médio das ROHs por cromossomo</u>, usada para construir a Figura 3, também pode ser usada juntamente com a informação do <u>tamanho total em</u> <u>Megabases (Mb) de cada cromossomo</u> para montar um gráfico com a proporção do genoma que é coberto por ROHs.

Como saber o tamanho de cada cromossomo?

Caso não tenha a informação do tamanho de cada cromossomo da espécie com a qual está trabalhando, isso pode ser pesquisado no site NCBI. O processo é relativamente rápido. Verificar tutorial "Como saber o tamanho de cada cromossomo.PDF". Para construir um gráfico de Genome Coverage por cromossomo como na Figura 4 foi utilizado uma planilha do Excel. Ao final deste tutorial podem ser encontrados os arquivos em Rmarkdown para os scripts do R e também o esquema para montar a figura 4 no Excel (2_Genome_Coverage_xlsx).

4. Calculando a endogamia baseada em ROH (FROH)

Para calcular a endogamia com base em ROH (F_{ROH}), neste caso, foi usado o pacote detectRUNS (Biscarini et al., 2019) no software R (R version 4.0.2; R Foundation for Statistical Computing, Vienna, Austria). O pacote detectRUNS é aplicado para genomas diploides.

A forma de se calcular a F_{ROH} é pela seguinte fórmula (McQuillan et al., 2008):

$$F_{ROH} = \frac{\sum_{j=1}^{n} L_{ROH}}{L_{aut}}$$

onde L_{ROH} é a soma de ROH por animal acima de um certo critério de comprimento e L_{aut} é o tamanho total dos cromossomos autossômicos, coberto por marcadores. L_{aut} para o genoma amplo aqui neste exemplo foi tomado como 2489.37Mb em comprimento, baseado nas posições do mapa ARS-UCD1.2 da montagem do genoma bovino (Rosen et al., 2020).

A endogamia pode ser obtida para cada cromossomo, para cada animal e, também, por animal e classe de ROH (de 1 a 2 Mb, 2 a 4 Mb, 4 a 8 Mb, 8 a 16 Mb e acima de 16 Mb).

O script do R (3_Calculo_FROH.R) tem a forma de se calcular a endogamia baseada em ROH com o pacote detectRUNS. Para calcular a endogamia será necessário o arquivo de mapa (arquivo123.map) e o arquivo de saída com os resultados (.hom) usado na análise de ROH do PLINK.

4.1 FROH por cromossomo e por classe

Para montar os gráficos do coeficiente de endogamia (FROH) por cromossomo (Figura 5) e por classe de ROH (Figura 6), usar o script do R (4_FROH_graficos.R).

4.2 Variação de uma característica com a Froh

Caso tenha um fenótipo e queira verificar como a endogamia está interferindo nesta característica, verificar o script do R: 5_Trait_FROH.R

Para montar um gráfico com a relação entre o fenótipo e a endogamia, será preciso o arquivo de fenótipos com pelo menos uma coluna com a identificação do animal e uma coluna com os valores da característica. Também precisa do arquivo Froh_GW.txt que

contém uma coluna de identificação do animal e uma coluna com o valor da FROH por animal, gerado anteriormente com o script do R (3_Calculo_FROH.R). Montando o gráfico da variação da característica em relação ao coeficiente de endogamia (F_{ROH}), podemos observar se a F_{ROH} afeta a característica de forma positiva ou negativa. Com o exemplo hipotético (dados2.txt) podemos observar na Figura 7 que com o aumento da endogamia temos uma queda no fenótipo (depressão endogâmica).

Para afirmar que a queda ou aumento das características é significativo, precisamos verificar o coeficiente linear e nível de significância. O script do R (5_Trait_FROH.R) também pode ser usado para salvar vários resultados da regressão da característica em função do coeficiente de endogamia (F_{ROH}).

Tabela 2. Exemplo) de resultados	da regressão	da característica	em função d	la
FROH					

Item	Resultado
Intercepto	45.6974910287186
Coeficiente_linear	-53.9241104581322
Desvio_padrao_residual	17.4429714950595
Graus_de_liberdade	48
R ²	0.0122640135781325
R ² _ajustado	-0.00831381947232313

Estatística_F	0.595981780397474
p-value	0.443899685018646

Também é possível verificar como as características variam com a FROH em cada cromossomo (5_Trait_FROH.R \rightarrow Seção 'Variação da característica com a F_{ROH} e cada cromossomo'). Com a endogamia por cromossomo podemos observar que a característica varia de forma positiva, negativa ou não sofre variação dependendo do cromossomo (Figura 8).

Os cromossomos autossômicos da espécie *Bos taurus* são identificados pela sigla BTA: *Bos taurus autossome*.

O script do R (5_Trait_FROH.R) também pode ser usado para salvar os resultados da regressão da característica em função do coeficiente de endogamia (F_{ROH}) por cromossomo.

Referências

Biscarini, F., P. Cozzi, G. Gaspa, and G. Marras. 2019. detectRUNS: an R package to detect runs of homozygosity and heterozygosity in diploid genomes. Univ. Guelph. <u>https://CRAN.R-project.org/package=detectRUNS</u>.

McQuillan, R., A.L. Leutenegger, R. Abdel-Rahman, C.S. Franklin, M. Pericic, L.

Barac-Lauc, N. Smolej-Narancic, B. Janicijevic, O. Polasek, A. Tenesa, A.K.
MacLeod, S.M. Farrington, P. Rudan, C. Hayward, V. Vitart, I. Rudan, S.H. Wild,
M.G. Dunlop, A.F. Wright, H. Campbell, and J.F. Wilson. 2008. Runs of
Homozygosity in European Populations. Am. J. Hum. Genet. 83.
doi:10.1016/j.ajhg.2008.08.007.

- R Core Team. 2022. 'R: A language and environment for statistical computing' R Foundation for Statistical Computing, Vienna, Austria. URL: <u>https://www.R-project.org/</u>.
- Rosen, B.D., D.M. Bickhart, R.D. Schnabel, S. Koren, C.G. Elsik, E. Tseng, T.N.
 Rowan, W.Y. Low, A. Zimin, C. Couldrey, R. Hall, W. Li, A. Rhie, J. Ghurye,
 S.D. McKay, F. Thibaud-Nissen, J. Hoffman, B.M. Murdoch, W.M. Snelling, T.G.
 McDaneld, J.A. Hammond, J.C. Schwartz, W. Nandolo, D.E. Hagen, C. Dreischer,
 S.J. Schultheiss, S.G. Schroeder, A.M. Phillippy, J.B. Cole, C.P. Van Tassell, G.
 Liu, T.P.L. Smith, and J.F. Medrano. 2020. De novo assembly of the cattle
 reference genome with single-molecule sequencing. Gigascience 9.
 doi:10.1093/gigascience/giaa021.

5. Análise de FST – assinatura de seleção

Para encontrar assinaturas de seleção por meio do índice de fixação de Wright (FST), a análise pode ser feita na mesma linha de comando quando fazemos a busca por corridas de homozigose no PLINK.

- Para a análise de assinatura de seleção por FST usando o PLINK, precisamos de:
 - Arquivo adicional com as colunas: FID (família), ID (identificação do animal), cluster (grupo). Exemplo:

FID	ID	cluster
0	1	1
0	2	1
0	3	1
0	4	2
0	5	2
0	6	2
0	7	2
0	8	3
0	9	3
0	10	3

A coluna de família está zerada, pois não será usada nesta análise. A coluna de Id identifica o indivíduo e a coluna cluster indica a qual grupo esse animal pertence. O grupo pode ser referente a raças (1, 2 e 3), a indivíduos com alto e baixo valor genético para uma característica (1: alto valor genético e 2: baixo valor genético) ou outro tipo de classificação – isso vai depender da metodologia da pesquisa.

Parâmetros adicionados na linha de comando: --within, --fst

./plink --bfile plinkbfile_arquivo123 --cow --noweb --homozyg-density 50 --homozyggap 1000 --homozyg-kb 1000 --homozyg-snp 50 --homozyg-window-het 1 --homozygwindow-missing 5 --homozyg-window-snp 50 --homozyg-window-threshold 0.05 -nonfounders --geno 0.02 --maf 0.05 --mind 0.1 --within arquivo_com_grupos.ped --fst --out roh_out_arquivo123

Resultados

Além dos resultados da análise de ROH, um arquivo .fst será resultante dessa análise. Este arquivo contém as colunas:

- CHR # Cromossomo
- SNP # Identificação do marcador

- POS # Posição do marcador em pares de bases
- NMISS # Número total de indivíduos usados na análise
- FST # Valor de FST para cada marcador

O script do R (6_ManhattanPlot_FST.R) pode ser usado para montar um Manhattan Plot com os resultados do arquivo .fst, como no exemplo abaixo:

Figura 9. Exemplo de Manhattan Plot que pode ser construído para identificar assinaturas de seleção pela metodologia FST

Como o threshold (nível de significância) foi definido?

- Fst é uma medida de diferenciação entre duas populações.
- Valores variando de 0 (nenhuma diferença entre as populações) a 1 (diferenças fixas entre as populações).
- Valores de Fst entre 0 e 0,05 indicam pouca diferenciação genética
- Valores de Fst entre 0,05 e 0,15 indicam diferenciação genética moderada
- Valores de Fst entre 0,15 e 0,25 indicam grande diferenciação genética
- Valores de Fst acima de 0,25 indicam um grau muito grande de diferenciação genética

<u>Fonte</u>: Wright, S. 1978. Evolution and the Genetics of Populations. Vol. 4. Variability Within and Among Natural Populations. University Chicago Press, Chicago, USA.

> A forma de definir o threshold pode depender do pesquisador.

O threshold estabelecido neste caso foi de 0,15, porque não havia valores acima de 0,25.

Com o script **6_ManhattanPlot_FST.R** também podemos verificar e salvar as regiões (posições dos marcadores e cromossomos) acima do threshold estabelecido, no caso, FST > 0,15.

- O próximo passo seria uma análise de Ontologia Gênica:
- Busca de genes nestas regiões genômicas
- Pesquisa por processos biológicos relacionados a estes genes

1_ROH_graficos_classes.R

Particular

2023-10-04

rm(list=ls())
options(stringsAsFactors=F)

directionar para o diretorio onde estao os arquivos
setwd("D:\\PessoalD\\Doutorado\\Cap 2 ROH\\Tutorial\\1_ROH_FROH")

saida_hom<-read.table("roh_out_gir_total.hom",h=T) # Lendo o arquivo .hom
dim(saida_hom) # N?mero de Linhas e colunas (dimens?o) do arquivo</pre>

[1] 105327 13

head(saida_hom) # Visualizando as primeiras 6 linhas do arquivo

## FID DENSITY PHOM	IID PHET	PHE	CHR	SNP1	SNP2	P0S1	POS2	КВ	NSNP
## 1 0 10291 6.646 1.000 0.	6029440 000	-9	1	BovineHD0100006914	BovineHD0100012022	23381349	42095937	18714.589	2816
## 2 0 10291	6029440 005	-9	1	BovineHD0100047134	BovineHD0100029888	102458103	105162097	2703.995	377
## 3 0 10291	6029440 002	-9	1	BovineHD0100041142	BovineHD0100043043	143141556	148784184	5642.629	975
## 4 0 10291	6029440	-9	1	BovineHD0100043081	BovineHD0100044197	148857503	152070453	3212.951	397
## 5 0 10291	6029440	-9	1	BovineHD0100044217	BovineHD0100045574	152126033	156040374	3914.342	685
5.714 0.999 0. ## 6 0 10291 15.995 1.000 0	6029440 .000	-9	2	BovineHD0200019851	BovineHD0200020565	68732542	71627667	2895.126	181

saida_hom\$MB<-saida_hom\$KB/1000 # Criando uma coluna com o tamanho das ROHs em Mbases

Numero de ROHs por individuo

roh_animais<-as.data.frame(table(saida_hom\$IID)) # Numero de ROHs por individuo
Esse numero de ROHs por individuo é o mesmo que a coluna NSEG do arquivo .hom.indiv
head(roh_animais)</pre>

Var1 Freq ## 1 102916029440 51 ## 2 AB52502 52 ## 3 AB52503 41 ## 4 AB52505 55 AB52508 ## 5 58 ## 6 AB52511 64 mean(roh_animais\$Freq) # Numero medio de ROHs por individuo

[1] 50.32346

sd(roh_animais\$Freq) # Desvio padrao do numero medio de ROHs por individuo

[1] 8.591984

min(roh_animais\$Freq) # Numero minimo de ROHs por individuo

[1] 26

max(roh_animais\$Freq) # Numero maximo de ROHs por individuo

[1] 95

Numero de ROHs por cromossomo
N_ROH_CHR<-as.data.frame(table(saida_hom\$CHR))
head(N_ROH_CHR) # Numero total de ROHs por cromossomo</pre>

Se quiser, pode fazer o grafico com esse arquivo # Se for usar e quiser salvar esse arquivo, tirar o # da linha de comando abaixo. #write.table(N_ROH_CHR, "Resultado_numero_ROH_por_CHR.txt",quote=F,row.names=F,colnames=T)

Grafico do numero total de ROHs por cromossomo
Exemplo do numero total de ROHs por cromossomo
max(N_ROH_CHR\$Freq) # Verificando qual o valor maximo para estabelecer o ylim no comando abaixo

[1] 6600

w<-barplot(N_ROH_CHR\$Freq,ylim=c(0,8000),ylab="Number of ROHs",xlab="Chromosome")
w</pre>

##		Г 1]
## ##	[1]	[,1] 0.7
## ##	[1,]	1.0
## ##	[2,]	1.9
##	[3,]	3.1
##	[4,]	4.3
##	[5,]	5.5
##	[6,]	6.7
##	[7,]	7.9
##	[8,]	9.1
##	[9,]	10.3
##	[10,]	11.5
##	[11,]	12.7
##	[12,]	13.9
##	[13,]	15.1
##	[14,]	16.3
##	[15,]	17.5
##	[16,]	18.7
##	[17,]	19.9
##	[18,]	21.1
##	[19,]	22.3
##	[20,]	23.5
##	[21,]	24.7
##	[22,]	25.9
##	[23,]	27.1
##	[24,]	28.3
##	[25,]	29.5
##	[26,]	30.7
##	[27.]	31.9
##	[28,]	33.1
##	[29.]	34.3
	[]	55


```
# Se for usar esse grafico, SALVAR! Export -> Save as Image ... ou ... Arquivo -> salvar como...
```

```
#### Numero de ROHs por individuo e cromossomo ####
N_ROH_IID_CHR<-table(saida_hom$IID, saida_hom$CHR)
N_ROH_IID_CHR1<-as.data.frame(colMeans(N_ROH_IID_CHR))
N_ROH_IID_CHR1</pre>
```

##		<pre>colMeans(N_ROH_IID_CHR)</pre>
##	1	2.9751553
##	2	3.0047778
##	3	1.9450549
##	4	2.0468227
##	5	3.1533684
##	6	2.5131390
##	7	2.0592451
##	8	2.1839465
##	9	2.2704252
##	10	2.2365026
##	11	1.7940755
##	12	2.3210702
##	13	2.2398471
##	14	1.6053512
##	15	1.7849976
##	16	1.4409938
##	17	1.5150502
##	18	1.1978022
##	19	1.3602484
##	20	1.4056378
##	21	1.6445294
##	22	1.5284281
##	23	0.9331104
##	24	1.1720019
##	25	0.7634974
##	26	0.7716197
##	27	0.7152413
##	28	0.6865743
##	29	1.0549451

Se for usar e quiser salvar esse arquivo, tirar o # da linha de comando abaixo. #write.table(N_ROH_IID_CHR1, "Resultado_numero_ROH_por_indiv_CHR.txt",quote=F,row.names=F,colnames=T)

Grafico do numero de ROHs por individuo e cromossomo
Exemplo do numero medio de ROHs por individuo e cromossomo
max(N_ROH_IID_CHR1)

[1] 3.153368

barplot(t(N_ROH_IID_CHR1),ylim=c(0,4),ylab="Number of ROHs",xlab="Chromosome")

Se for usar esse grafico, SALVAR!

Comprimento medio de ROHs por cromossomo (Mb)
size_CHR<-aggregate(MB ~ CHR, saida_hom, mean)
size_CHR</pre>